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ABSTRACT

There has been a long-standing interest in the design of controllers for

multilegged vehicles. Our approach is to apply distributed control to this

problem, rather than using parallel computing of a centralized algorithm. We

describe a distributed neural network controller for hexapod_locomotion which
is based on the neural control of locomotion in insects. The model considers

the simplified kinematics with two degrees of freedom per leg, but the model

includes the static stability constraint. Through simulation we have

demonstrated that this controller can generate a continuous range of

statically stable gaits at different speeds by varying a single control

parameter. In addition, the controller is extremely robust, and can continue
to function even after several of its elements have been disabled. We are

building a small hexapod robot whose locomotion will be controlled by this
network. We intend to extend our model to the dynamic control of legs with

more than two degrees of freedom by using data on the control of

multisepented insect legs. Another immediate application of this neural

control approach is also exhibited in biology: the escape reflex. Advanced

robots are being equipped with tactile sensing and machine vision so that the

sensory inputs to the robot controller are vast and complex. Neural networks
are ideal for a lower level safety reflex controller because of their

extremely fast response time. Our combination of robotics, computer

modelling, and neurobiology has been remarkably fruitful, and is likely to

lead to deeper insights into the problems of real-time sensorimotor control.

I. INTRODUCTION

in rough terrain multi-legged walking machines promise much greater

mobility than their wheeled counterparts. Walking vehicles are being
researched and developed for hazardous rough environments such as
battlefields, nuclear irradiated facilities and remote planetary exploration.
Examples of these vehicles include some Mars Rover configurations (Ref. 1),
the six-legged OSU-DARPA vehicle (Ref. 2), and various machines in research
labs throughout the world (Ref. 3).

The major problems encountered in walking vehicle development are
hardware (especially sensor) reliability and control. The controller must
process all of the sensory data and coordinate the motions of the multiple
legs with their multiple joints while maintaining stability. Host control
approaches require position and rate feedback from all of the joints as well
as tactile or force feedback from contact surfaces. The sensory data may be
conflicting especially in the presence of sensor failure.
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Centralized control, where all control decisions are made based on all

sensory information and all performance requirements, has proven inefficient

and cumbersome. Centralized control requires that the computational speed be

extremely fast relative to the walking speed in order to process the large

quantity of complex sensory data and choose an acceptable joint motion in real
time. With centralized control, safety requires that the machine stop when

sensory information conflicts or hardware failure occurs. Parallel processing

can increase computational speed but in itself does not alleviate the basic
flaws of centralized control.

Distributed control approaches, where some control decisions are made
based on localized information, promise to speed the overall system.

Mechanical subdivisions such as individual joints or legs are to be controlled

by local dedicated processors. Some sensory and system information must be

shared among these parallel processors and a central processor. The central

processor is responsible for coordination of the subdivisions. A hierarchical

approach to system control permits distributed control of basic (low-level)

functions freeing the central processor for higher level control decisions.

The parallelism of distributed control promotes robustness in the presence of
malfunctions. The difficult questions encountered in applying this approach

are: What control architecture is suitable, how are the subdivisions chosen,

what information should be shared, and how much authority must the central

processor have?
Artificial neural networks offer the possibility of highly distributed

control. Each neuron can be viewed as a processor working in parallel with

the other neurons. The synapses which connect the neurons permit the sharing
of information. Most research in artificial neural nets has emphasized

homogeneous architectures where all neurons are of the same design despite

their function. Learning is the process where the sTnaptic weights are

adjusted so that the nervous system exhibits the desired input/output

characteristics. A synaptic weight of zero nullifies the synaptic connection
between two neurons. Learning is generally required for even the most
fundamental tasks.

Even relatively primitive animals such as insects have nervous systems

which are orders of magnitude more complex than the most advanced artificial

neural nets. Yet, biologists are now studying certain insect nervous systems
in detail with the intent of understanding their architecture and input/output
characteristics.

In nature insects solve the problem of coordination of six

multi-segmented legs in real time in the presence of variations in terrain and

developmental changes. Also, insects display robustness, that is, they
continue to function, although less efficiently, after suffering mechanical

and electrical dalage (Ref. 4). Biologists have found that nervous systems

are heterogeneous, that is, a neurons structure is closely tied to its

function. As a consequence, insects display remarkable coordination at birth.
Their neural architecture is such that they do not require learning to

perform basic functions. However, learning permits the insects to adapt to
their environment and become more efficient.

An artificial neural network was developed to control the kinematic

problem of locomotion of a hexapod walking machine in the presence of the

static stability constraint. The hexapods six legs each had two degrees of

freedom: foot up/down and leg swing front/back. The controller architecture

was inspired by neurobiology; The artificial neural net was heterogeneous and

learning was not necessary.

A computer simulation was performed displaying locomotion of the hexapod.
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Changing a single input caused the hexapod to change its gait. The gaits are
very similar to those observed in nature. The robustness of the controller in
the presence of malfunctions was investigated through "lesion studies". For
this purpose particular synapses in the artificial neural network were severed
rendering a particular neuron ineffective during simulations. These lesion
studies demonstrated that the artificial neural controller is robust to damage
to any neuron.

The neural controller described in this paper was developed by Beer,
Chiel and Sterling and has been published in other forums (Refs. 5,6). We
(the entire list of authors) have since been working together on the project.
The pupose of this paper is to report what we believe are important findings
to the Aerospace community and highlight direct applications of this type of
neural control to the Aerospace field.

2. HEXAPOD MECHANICAL MODEL

The mechanical model is a six-legged walking vehicle with two degrees of

freedom per leg. It is loosely based on Periplaneta americana, the American

Cockroach and Fig. 1 is a top view of the model. The legs can swing back and

forth and the foot can be raised and lowered. The small black squares in Fig.

1 denote the feet in the down position. The simulated locomotion of the

hexapod takes place in a horizontal plane on a smooth surface. The dashed

lines connecting the squares form what is known as the static stability

polygon. When the center of mass of the hexapod lies inside this polygon, the

system is statically stable. Other than satisfying the static stability
constraint, the simulated model considers only simplified kinematics where the

leg swing and foot up/down motions are considered to be independent.

The natural insect actually has what can considered to be four revolute

degrees of freedom per leg for a total of 24 joint degrees of freedom. The

"hip" joint where the leg attaches to the body has two revolute degrees of

freedom permitting swing along the body axis and away from the body. The

lower two joint degrees of freedom, the "knee" and "ankle", joint axes are

aligned. The "foot" is long and relatively flexible. When a foot is down,
consider that the foot translation is constrained to zero. Hence, ignoring

flexibility, when all six feet are down, there are 18 constraints leaving 6

degrees of freedom. The insect can then move its body rigidly with all its
feet down.

Our hexapod model, on the other hand, has only two degrees of freedom per

leg. Furthermore, we make the simplification that the swing and foot up/down

motions are independent. Actually, the joint motions must be coupled and the
joints must move simultaneously to accomplish the desired walking motion. The

desired walking motion involves only translation of the body forward or
backward without unnecessary pitching or other body motions. With all feet

down and constrained to zero translation, our model permits the body to

translate forward or backward with appropriate coupled motion of all the

Joints.

3. NEURAL CONTROLLER MODEL

A schematic showing the electrical circuit of the most complex neuron

used in the heterogeneous network is shown in Fig. 2. Weighted synaptic
currents are input/output from/to connected neurons. The synapses are

weighted to establish a hierarchy for the input information. Intrinsic
currents are internal to the neuron and permit "self stimulation." The

parallel RC circuit mimics biological cell membrane electrical
characteristics. The output firing frequency of the cell is a nonlinear
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function f(V) of the resulting neural potential V. Saturating linear
threshold functions were used as shown in Fig. 2b.

Summing the currents in the network, the state equation for the ith

neuron can be expressed as
n m

-- = (Vi,t) - __
Cl dt j 1SIjFj(Vj) ÷k R i

where SIj is the weight for the synapse carrying input current from the jth

neuron to the ith neuron. If this weight is zero, there is no electrical

connection between these neurons. In general the model includes n neurons in
m

the network and m intrinsic currents for the ith neuron. I is the kth
k

intrinsic current for the ith neuron and it is in general a function of the

neuron potential and time.

Biological nervous systems display heterogeneous architectures. In

particular, some natural neurons exhibit intrinsic stimulation characteristics

and some do not. In fact, intrinsic currents have proven to be important

neural components underlying many behaviors. A "pacemaker" cell is capable of

intrinsically producing rhythmic bursting and can be externally inhibited or

excited by other neurons. In this way the frequency and phase of the internal

bursting rhythm can be changed by other neural inputs. As described by Kandel

(Ref. 7), a pacemaker cell exhibits the following characteristics: I) when it
is inhibited below its threshold, it does not fire, 2) when it is excited

beyond saturation, it fires continuously, 3) between these extremes, the

firing frequency is a continuous function of the membrane potential, 4)

transient excitation or inhibition can shift the phase of (reset) the

intrinsic firing rhythm.

Pacemaker cells play a crucial role in our locomotion controller. In our

model two intrinsic currents permitted a neuron to act as a pacemaker cell.

One current IH tended to raise the neural potential above firing threshold and

the other intrinsic current IL tended to lower the potential below threshold.

The "control law" for these currents obeyed the following rules: 1) IN is

triggered or IL is terminated when the cell potential goes above threshold,

and remains active for a fixed time period, 2) It is triggered when Ix

terminates, and then remains active for a variable time period which is a
linear function of membrane potential.

4. NEURAL NETWORK CONTROLLER

The kinematic locomotion controller consists of a network of 6 neurons

controlling each leg and 1 central command neuron for a total of 37 neurons.

Figure 3 shows the controller for a single leg including the common command
neuron. There are three motor neurons per leg: stance, foot, and swing. The

stance neuron swings the leg backward and, if the foot is down, propels the

body forward. When the foot motor neuron fires, the foot is lowered. The

swing neuron swings the leg forward and, if the foot is down, propels the body

backward. The level of the outputs of the motor neurons determines the speed
of the motor actions.

The pacemaker P natural rythmic firing inhibits the foot and stance

neurons and excites swing. The command neuron C excites the pacemaker and

stance neurons. This excitation influences pacemaker burst rate and stance
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speed so that the command neuron may be thought of in simple terms as the
throttle.

The locomotion controller can function open-loop based on the "natural"

pacemaker rhythm. However, in order to smooth and coordinate the swing/stance

transitions, limit-switch sensor neurons were added to sense when the legs
reached extreme backward and forward angle positions. This information is

fedback to the pacemaker neuron. The forward angle sensor information is also
fedback to the motor neurons which provides a biologically inspired "stance

reflex" (Ref. 8). The stance reflex compensates for the delay at the end of

each swing caused by the RC characteristics and smooths the jerky movements

otherwise caused by the delay, and increases stability.
The backward angle sensor neuron excites the pacemaker which in turn

excites the swing. The forward angle sensor inhibits the pacemaker and swing
and excites the stance and foot (stance reflex). Hence, the sensors reinforce

the controller strategy and coordinate the leg motors. These sensors were

inspired by the hair plate receptors observed on the natural insect.
If we ended the controller development at this point, the legs would

function independently except for the input of the common command neuron. The

resulting walking gaits show arbitrary leg movements and are awkward,
uncoordinated and often statically unstable. Again, inspired by observed

natural insect walking gaits (Ref. 8), we observe that adjacent legs do not

swing simultaneously which is clearly a good rule of thumb for maintaining
static stability. This controller strategy was implemented through adjacent

pacemaker inhibition shown in Fig. 4.
Stability remains a problem for the controller because there is no device

to order the stepping sequence. The gaits were found to depend on the initial

angles of the legs. Turning to biology for inspiration once more, we note
that insects tend to walk with their legs in a particular sequence: the

"metachronal wave" of stepping progresses from back to front (Ref. 9). This

sequence was achieved by our controller by slightly increasing the leg angle
ranges of the rear legs, lowering their stepping frequency for a given

constant swing/stance angular rate.
The rear legs angle range increase along with the pacemaker coupling of

Fig. 4 results in the rear legs entraining the middle legs as illustrated in
Fig. 5. In this simplified example, R3 and R2 denote the right rear and right

middle legs. The square impulses drawn with dashed lines show the coupling

pacemaker inhibition by the other leg. The bold lines denote pacemaker

firing. Note the longer stroke of R3. In this example the fourth R2

pacemaker firing is delayed through inhibition by R3. The entrainment is then

complete, the middle leg swings immediately after the back leg.

5. _IMULATION R_SULTS
When the neural controller was implemented on the simulated hexapod in a

smooth environment, the hexapod walked successfully. The walking speeds and
gaits changed when the firing frequency of the central command neuron was
varied. A continuum of statically stable gaits was observed from the "wave

gait" to the "tripod gait." Very similar gaits are observed in biological
insects locomotion. Noteably, these gaits "naturally" occur in the simulation
environment as a result of the interaction between the neural controller and
the mechanical model.

Figure 6 is a comparison of gaits of biological insects (Ref 10) with the
simulated gaits of the model hexapod. The legs are labeled as in the top of
Fig. 6. A black bar denotes the swing phase of each leg; during the space
between the swings, the legs are in the stance phase. The simulated gaits
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(Fig. 6b) were chosen from the continuum of possible gaits to most closely

match the displayed natural gaits. These gaits were obtained by merely

increasing the firing rate of the command neuron from the lowest (top figure)

to the highest (bottom figure).

The bottom-figure (Fig. 6a) natural gate is statically unstable and so

could not be obtained our model. In the wave gate, the metachronal waves on
each side of the body are nearly separated (top comparative figures in Fig. 6a

and 6b). In the tripod gate (bottom comparative figures in Fig. 6a and 6b)

the front and back legs on one side of the body step with the middle leg on
the other side.

Lesion studies were conducted to determine the robustness of the

controller to particular neurons being disabled (Ref. 6). Because of its

highly distributed architecture, the controller was found to be robust to

damage to any individual element. For instance, when the command neuron was

disabled during a stable gait, there was no effect. When the command neuron

was disabled initially, a stable gait displaying the metachronal wave was

slowly reached. This illustrates the value of the "self stimulating"

pacemaker neurons. In another case_ the rear sensors were disabled during the

tripod gait with no effect. When the rear sensors were disabled during a
slower gait, a stable gait ensued.

6. CONCLUSIONS AND ONC_ING WORK

An artificial neural network was designed for the purpose of controlling

a simulated hexapod walking vehicle. The neural model and network

architecture were inspired by observed natural insect nervous systems. The

simulation addressed the kinematic problems of locomotion of a six legged

walking vehicle with two degrees of freedom per leg subject to the static
stability constraint. The neural control "strategy" includes feedback from

sensor neurons which fire when the legs reach their extremes angles.

Pacemaker neurons which have an intrinsic firing rhythm play a crucial role in

the controller.

The hexapod walked successfully exhibiting a continuum of statically

stable gaits. The walking gait and speed depended on the central command

neuron firing frequency so that the command neuron could be thought of as a

throttle. The gaits appear "naturally" in simulation because of the
interactions between the controller and the mechanical model. The gaits are

very similar to those exhibited by natural insects.

The controller is highly distributed; The only coupling between the legs

is through adjacent leg pacemaker inhibition and the command neuron is the
only common central neuron. Furthermore, the pacemakers natural rhythm

enables stable walking gaits even when the command neuron is silent. This

high degree of control distribution (or parallelism) produces an extremely
robust controller. In fact, the controller is robust to removal of any
individual neuron.

The high degree of distribution also yields a controller with extremely

quick reflex-like responses. A clear application of this type of system is

for safety-reflex control of all types of robots and telerobots with advanced

sensing capabilities. A great deal of complex sensing information can be
provided by tactile and force sensors as well as machine vision. When a

dangerous situation arises, the time delays associated with a centralized

controller will not permit the robot to recognize the danger and react in the

short amount of time that may be needed to avoid catastrophe. The danger

could be for the robot itself, for humans, or for precious cargo. A lower

level neural reflex controller can be preprogrammed to recognize dangerous
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situations and reside in the robot control hierarchy. When the situation

arises, the reflex controller can then take command to move the robot to a

predetermined safe configuration.

The reflex safety response is also biologically inspired. For instance,

the American Cockroach senses wind from a suddenly approaching predator, turns

away and begins to run in approximately 50 milliseconds. Biologists at CWRU

are presently studying this phenomenon and the detailed nervous system of this
insect.

We are also constructing a three dimensional simulated hexapod model
including dynamics so that we can further validate and improve the controller.

A small mechanical hexapod machine is beYng Constructed with the intention of

applying our controller to a working machine. The vehicle initially will have

two degrees of freedom per leg , but a third degree of freedom is to be

eventually added to permit smooth turning and climbing.
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